关于Java 23种设计模式

java的设计模式大体上分为三大类

创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

设计模式遵循的原则有6个

1、开闭原则(Open Close Principle)

对扩展开放,对修改关闭。

2、里氏代换原则(Liskov Substitution Principle)

只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。

3、依赖倒转原则(Dependence Inversion Principle)

这个是开闭原则的基础,对接口编程,依赖于抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle)

使用多个隔离的借口来降低耦合度。

5、迪米特法则(最少知道原则)(Demeter Principle)

一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

原则是尽量使用合成/聚合的方式,而不是使用继承。继承实际上破坏了类的封装性,超类的方法可能会被子类修改。

创建型模式

1. 工厂模式(Factory)

工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:如何创建及如何向客户端提供。

常用的工厂模式是静态工厂,利用static方法,作为一种类似于常见的工具类Utils等辅助效果,一般情况下工厂类不需要实例化。

interface food{}

class A implements food{}
class B implements food{}
class C implements food{}

public class StaticFactory {

    private StaticFactory(){}

    public static food getA(){  return new A(); }
    public static food getB(){  return new B(); }
    public static food getC(){  return new C(); }
}

class Client{
    //客户端代码只需要将相应的参数传入即可得到对象
    //用户不需要了解工厂类内部的逻辑。
    public void get(String name){
        food x = null ;
        if ( name.equals("A")) {
            x = StaticFactory.getA();
        }else if ( name.equals("B")){
            x = StaticFactory.getB();
        }else {
            x = StaticFactory.getC();
        }
    }
}

2. 建造者模式(Builder)

建造模式:将产品的内部表象和产品的生成过程分割开来,从而使一个建造过程生成具有不同的内部表象的产品对象。建造模式使得产品内部表象可以独立的变化,客户不必知道产品内部组成的细节。建造模式可以强制实行一种分步骤进行的建造过程。

在了解之前,先假设有一个问题,我们需要创建一个学生对象,属性有name,number,class,sex,age,school等属性,如果每一个属性都可以为空,也就是说我们可以只用一个name,也可以用一个school,name,或者一个class,number,或者其他任意的赋值来创建一个学生对象,这时该怎么构造?

难道我们写6个1个输入的构造函数,15个2个输入的构造函数…….吗?这个时候就需要用到Builder模式了。给个例子,大家肯定一看就懂:

public class Builder {

    static class Student{
        String name = null ;
        int number = -1 ;
        String sex = null ;
        int age = -1 ;
        String school = null ;

        //构建器,利用构建器作为参数来构建Student对象
        static class StudentBuilder{
            String name = null ;
            int number = -1 ;
            String sex = null ;
            int age = -1 ;
            String school = null ;
            public StudentBuilder setName(String name) {
                this.name = name;
                return  this ;
            }

            public StudentBuilder setNumber(int number) {
                this.number = number;
                return  this ;
            }

            public StudentBuilder setSex(String sex) {
                this.sex = sex;
                return  this ;
            }

            public StudentBuilder setAge(int age) {
                this.age = age;
                return  this ;
            }

            public StudentBuilder setSchool(String school) {
                this.school = school;
                return  this ;
            }
            public Student build() {
                return new Student(this);
            }
        }

        public Student(StudentBuilder builder){
            this.age = builder.age;
            this.name = builder.name;
            this.number = builder.number;
            this.school = builder.school ;
            this.sex = builder.sex ;
        }
    }

    public static void main( String[] args ){
        Student a = new Student.StudentBuilder().setAge(13).setName("LiHua").build();
        Student b = new Student.StudentBuilder().setSchool("sc").setSex("Male").setName("ZhangSan").build();
    }
}

3、工厂模式(Factory Method)

工厂方法模式:核心工厂类不再负责所有产品的创建,而是将具体创建的工作交给子类去做,成为一个抽象工厂角色,仅负责给出具体工厂类必须实现的接口,而不接触哪一个产品类应当被实例化这种细节。

一个基础接口定义了功能,每个实现接口的子类就是产品,然后定义一个工厂接口,实现了工厂接口的就是工厂,这时候,接口编程的优点就出现了,我们可以新增产品类(只需要实现产品接口),只需要同时新增一个工厂类,客户端就可以轻松调用新产品的代码。

实例代码:

interface food{}

class A implements food{}
class B implements food{}

interface produce{ food get();}

class FactoryForA implements produce{
    @Override
    public food get() {
        return new A();
    }
}
class FactoryForB implements produce{
    @Override
    public food get() {
        return new B();
    }
}
public class AbstractFactory {
    public void ClientCode(String name){
        food x= new FactoryForA().get();
        x = new FactoryForB().get();
    }
}

4、prototype

原始模型模式:通过给出一个原型对象来指明所要创建的对象的类型,然后用复制这个原型对象的方法创建出更多同类型的对象。原始模型模式允许动态的增加或减少产品类,产品类不需要非得有任何事先确定的等级结构,原始模型模式适用于任何的等级结构。缺点是每一个类都必须配备一个克隆方法。

浅拷贝
public class Prototype implements Cloneable{

    private String name;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    protected Object clone()   {
        try {
            return super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }finally {
            return null;
        }
    }

    public static void main ( String[] args){
        Prototype pro = new Prototype();
        Prototype pro1 = (Prototype)pro.clone();
    }
}

深拷贝

public class Professor implements Cloneable {

    private String name;
    private Integer age;

    public Professor(String name, Integer age) {
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }

    public Object clone() {

        Object o = null;
        try {
            o = super.clone();
        } catch (CloneNotSupportedException e) {
            System.out.println(e.toString());
        }
        return o;
    }

}

Student类:
public class Student implements Cloneable {

    private String name;
    private Integer age;
    private Professor professor;

    public Student(String name, Integer age, Professor professor) {
        this.name = name;
        this.age = age;
        this.professor = professor;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }

    public Professor getProfessor() {
        return professor;
    }

    public void setProfessor(Professor professor) {
        this.professor = professor;
    }

    public Object clone() {

        Student o = null;
        try {
            o = (Student) super.clone();
        } catch (CloneNotSupportedException e) {
            System.out.println(e.toString());
        }
        o.professor = (Professor) professor.clone();
        return o;
    }
}

测试:
public class Demo01 {

    public static void main(String[] args) {

        Professor p = new Professor("wangwu", 50);
        Student s1 = new Student("xiaoming", 20, p);
        Student s2 = (Student) s1.clone();
        s2.getProfessor().setName("xiaowangwu");
        s2.getProfessor().setAge(40);
        System.out.println("name=" + s1.getProfessor().getName()
                + "," + "age=" + s1.getProfessor().getAge());
        System.out.println("name=" + s2.getProfessor().getName()
                + "," + "age=" + s2.getProfessor().getAge());
    }
}

输出结果:

name=wangwu,age=50
name=xiaowangwu,age=40

5、Sigleton

单例模式:单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例单例模式。单例模式只应在有真正的“单一实例”的需求时才可使用。

在内部创建一个实例,构造器全部设置为private,所有方法均在该实例上改动,在创建上要注意类的实例化只能执行一次,可以采用许多种方法来实现,如Synchronized关键字,或者利用内部类等机制来实现。

public class Singleton {
    private Singleton(){}

    private static class SingletonBuild{
        private static Singleton value = new Singleton();
    }

    public Singleton getInstance(){  return  SingletonBuild.value ;}

}

结构型模式

6、适配器模式(Adapter)

适配器(变压器)模式:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口原因不匹配而无法一起工作的两个类能够一起工作。适配类可以根据参数返还一个合适的实例给客户端。

适配器模式的作用就是在原来的类上提供新功能。主要可分为3种:

类适配:创建新类,继承源类,并实现新接口,例如 

class  adapter extends oldClass  implements newFunc{}

对象适配:创建新类持源类的实例,并实现新接口,例如 

class adapter implements newFunc { private oldClass oldInstance ;}

接口适配:创建新的抽象类实现旧接口方法。例如 

abstract class adapter implements oldClassFunc { void newFunc();}

7、桥接模式(Bridge)

桥梁模式:将抽象化与实现化脱耦,使得二者可以独立的变化,也就是说将他们之间的强关联变成弱关联,也就是指在一个软件系统的抽象化和实现化之间使用组合/聚合关系而不是继承关系,从而使两者可以独立的变化。

interface DrawAPI {
    public void drawCircle(int radius, int x, int y);
}
class RedCircle implements DrawAPI {
    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: red, radius: "
                + radius +", x: " +x+", "+ y +"]");
    }
}
class GreenCircle implements DrawAPI {
    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: green, radius: "
                + radius +", x: " +x+", "+ y +"]");
    }
}

abstract class Shape {
    protected DrawAPI drawAPI;
    protected Shape(DrawAPI drawAPI){
        this.drawAPI = drawAPI;
    }
    public abstract void draw();
}

class Circle extends Shape {
    private int x, y, radius;

    public Circle(int x, int y, int radius, DrawAPI drawAPI) {
        super(drawAPI);
        this.x = x;
        this.y = y;
        this.radius = radius;
    }

    public void draw() {
        drawAPI.drawCircle(radius,x,y);
    }
}

//客户端使用代码
Shape redCircle = new Circle(100,100, 10, new RedCircle());
Shape greenCircle = new Circle(100,100, 10, new GreenCircle());
redCircle.draw();
greenCircle.draw();

8、组合模式(Composite)

合成模式:合成模式将对象组织到树结构中,可以用来描述整体与部分的关系。合成模式就是一个处理对象的树结构的模式。合成模式把部分与整体的关系用树结构表示出来。合成模式使得客户端把一个个单独的成分对象和由他们复合而成的合成对象同等看待。

abstract class component{}

class File extends  component{ String filename;}

class Folder extends  component{
    component[] files ;  //既可以放文件File类,也可以放文件夹Folder类。Folder类下又有子文件或子文件夹。
    String foldername ;
    public Folder(component[] source){ files = source ;}

    public void scan(){
        for ( component f:files){
            if ( f instanceof File){
                System.out.println("File "+((File) f).filename);
            }else if(f instanceof Folder){
                Folder e = (Folder)f ;
                System.out.println("Folder "+e.foldername);
                e.scan();
            }
        }
    }

}

9、装饰模式(Decorator)

装饰模式:装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案,提供比继承更多的灵活性。动态给一个对象增加功能,这些功能可以再动态的撤消。增加由一些基本功能的排列组合而产生的非常大量的功能。

给一类对象增加新的功能,装饰方法与具体的内部逻辑无关。例如:

interface Source{ void method();}
public class Decorator implements Source{

    private Source source ;
    public void decotate1(){
        System.out.println("decorate");
    }
    @Override
    public void method() {
        decotate1();
        source.method();
    }
}

10、外观模式(Facade)

门面模式:外部与一个子系统的通信必须通过一个统一的门面对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。每一个子系统只有一个门面类,而且此门面类只有一个实例,也就是说它是一个单例模式。但整个系统可以有多个门面类。

public class Facade {
    private subSystem1 subSystem1 = new subSystem1();
    private subSystem2 subSystem2 = new subSystem2();
    private subSystem3 subSystem3 = new subSystem3();

    public void startSystem(){
        subSystem1.start();
        subSystem2.start();
        subSystem3.start();
    }

    public void stopSystem(){
        subSystem1.stop();
        subSystem2.stop();
        subSystem3.stop();
    }
}

11、享元模式(Flyweight)

享元模式:FLYWEIGHT在拳击比赛中指最轻量级。享元模式以共享的方式高效的支持大量的细粒度对象。享元模式能做到共享的关键是区分内蕴状态和外蕴状态。内蕴状态存储在享元内部,不会随环境的改变而有所不同。外蕴状态是随环境的改变而改变的。外蕴状态不能影响内蕴状态,它们是相互独立的。将可以共享的状态和不可以共享的状态从常规类中区分开来,将不可以共享的状态从类里剔除出去。客户端不可以直接创建被共享的对象,而应当使用一个工厂对象负责创建被共享的对象。享元模式大幅度的降低内存中对象的数量。

abstract class flywei{ }

public class Flyweight extends flywei{
    Object obj ;
    public Flyweight(Object obj){
        this.obj = obj;
    }
}

class  FlyweightFactory{
    private HashMap<Object,Flyweight> data;

    public FlyweightFactory(){ data = new HashMap<>();}

    public Flyweight getFlyweight(Object object){
        if ( data.containsKey(object)){
            return data.get(object);
        }else {
            Flyweight flyweight = new Flyweight(object);
            data.put(object,flyweight);
            return flyweight;
        }
    }
}

12、代理模式(Proxy)

代理模式:代理模式给某一个对象提供一个代理对象,并由代理对象控制对源对象的引用。代理就是一个人或一个机构代表另一个人或者一个机构采取行动。某些情况下,客户不想或者不能够直接引用一个对象,代理对象可以在客户和目标对象直接起到中介的作用。客户端分辨不出代理主题对象与真实主题对象。代理模式可以并不知道真正的被代理对象,而仅仅持有一个被代理对象的接口,这时候代理对象不能够创建被代理对象,被代理对象必须有系统的其他角色代为创建并传入。

interface Source{ void method();}

class OldClass implements Source{
    @Override
    public void method() {
    }
}

class Proxy implements Source{
    private Source source = new OldClass();

    void doSomething(){}
    @Override
    public void method() {
        new Class1().Func1();
        source.method();
        new Class2().Func2();
        doSomething();
    }
}

行为模式

13、chain of responsibleity

责任链模式:在责任链模式中,很多对象由每一个对象对其下家的引用而接

起来形成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。客户并不知道链上的哪一个对象最终处理这个请求,系统可以在不影响客户端的情况下动态的重新组织链和分配责任。处理者有两个选择:承担责任或者把责任推给下家。一个请求可以最终不被任何接收端对象所接受。

14、command

命令模式:命令模式把一个请求或者操作封装到一个对象中。命令模式把发出命令的责任和执行命令的责任分割开,委派给不同的对象。命令模式允许请求的一方和发送的一方独立开来,使得请求的一方不必知道接收请求的一方的接口,更不必知道请求是怎么被接收,以及操作是否执行,何时被执行以及是怎么被执行的。系统支持命令的撤消。

15、interpreter

解释器模式:给定一个语言后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。解释器模式将描述怎样在有了一个简单的文法后,使用模式设计解释这些语句。在解释器模式里面提到的语言是指任何解释器对象能够解释的任何组合。在解释器模式中需要定义一个代表文法的命令类的等级结构,也就是一系列的组合规则。每一个命令对象都有一个解释方法,代表对命令对象的解释。命令对象的等级结构中的对象的任何排列组合都是一个语言。

16、iterator

迭代子模式:迭代子模式可以顺序访问一个聚集中的元素而不必暴露聚集的内部表象。多个对象聚在一起形成的总体称之为聚集,聚集对象是能够包容一组对象的容器对象。迭代子模式将迭代逻辑封装到一个独立的子对象中,从而与聚集本身隔开。迭代子模式简化了聚集的界面。每一个聚集对象都可以有一个或一个以上的迭代子对象,每一个迭代子的迭代状态可以是彼此独立的。迭代算法可以独立于聚集角色变化。

17、mediator

调停者模式:调停者模式包装了一系列对象相互作用的方式,使得这些对象不必相互明显作用。从而使他们可以松散偶合。当某些对象之间的作用发生改变时,不会立即影响其他的一些对象之间的作用。保证这些作用可以彼此独立的变化。调停者模式将多对多的相互作用转化为一对多的相互作用。调停者模式将对象的行为和协作抽象化,把对象在小尺度的行为上与其他对象的相互作用分开处理。

18、memento

备忘录模式:备忘录对象是一个用来存储另外一个对象内部状态的快照的对象。备忘录模式的用意是在不破坏封装的条件下,将一个对象的状态捉住,并外部化,存储起来,从而可以在将来合适的时候把这个对象还原到存储起来的状态。

19、observer

观察者模式:观察者模式定义了一种一队多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态上发生变化时,会通知所有观察者对象,使他们能够自动更新自己。

20、state

状态模式:状态模式允许一个对象在其内部状态改变的时候改变行为。这个对象看上去象是改变了它的类一样。状态模式把所研究的对象的行为包装在不同的状态对象里,每一个状态对象都属于一个抽象状态类的一个子类。状态模式的意图是让一个对象在其内部状态改变的时候,其行为也随之改变。状态模式需要对每一个系统可能取得的状态创立一个状态类的子类。当系统的状态变化时,系统便改变所选的子类。

21、strategy

策略模式:策略模式针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。策略模式把行为和环境分开。环境类负责维持和查询行为类,各种算法在具体的策略类中提供。由于算法和环境独立开来,算法的增减,修改都不会影响到环境和客户端。

22、template method

模板方法模式:模板方法模式准备一个抽象类,将部分逻辑以具体方法以及具体构造子的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑。不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现。先制定一个顶级逻辑框架,而将逻辑的细节留给具体的子类去实现。

23、visitor

访问者模式:访问者模式的目的是封装一些施加于某种数据结构元素之上的操作。一旦这些操作需要修改的话,接受这个操作的数据结构可以保持不变。访问者模式适用于数据结构相对未定的系统,它把数据结构和作用于结构上的操作之间的耦合解脱开,使得操作集合可以相对自由的演化。访问者模式使得增加新的操作变的很容易,就是增加一个新的访问者类。访问者模式将有关的行为集中到一个访问者对象中,而不是分散到一个个的节点类中。当使用访问者模式时,要将尽可能多的对象浏览逻辑放在访问者类中,而不是放到它的子类中。访问者模式可以跨过几个类的等级结构访问属于不同的等级结构的成员类。